Titanio
Si desea modificar el contenido del articulo debe tener un Corrector Ortográfico instalado en Mozilla Firefox sino haga clic en Instalar Diccionario Español Venezuela
- Visualizando: Tutoriales
- Imprimir contenido
- Proponer un mejor articulo
- Favoritos
- Artículos Relacionados...
Titanio
El titanio es un elemento químico, de símbolo Ti y número atómico 22. Se trata de un metal de transición de color gris plata. Comparado con el acero, metal con el que compite en aplicaciones técnicas, es mucho más ligero (4,5/7,8). Tiene alta resistencia a la corrosión y gran resistencia mecánica, pero es mucho más costoso que el acero, lo cual limita su uso industrial. Es un metal abundante en la naturaleza; se considera que es el cuarto metal estructural más abundante en la superficie terrestre y el noveno en la gama de metales industriales. No se encuentra en estado puro sino en forma de óxidos, en la escoria de ciertos minerales de hierro y en las cenizas de animales y plantas. Su utilización se ha generalizado con el desarrollo de la tecnología aeroespacial, donde es capaz de soportar las condiciones extremas de frío y calor que se dan en el espacio y en la industria química, por ser resistente al ataque de muchos ácidos; asimismo, este metal tiene propiedades biocompatibles, dado que los tejidos del organismo toleran su presencia, por lo que es factible la fabricación de muchas prótesis e implantes de este metal. Posee propiedades mecánicas parecidas al acero, tanto puro como en las aleaciones que forma, por tanto compite con el acero en muchas aplicaciones técnicas, especialmente con el acero inoxidable. El titanio fue declarado material estratégico por parte de Estados Unidos durante muchos años. Puede formar aleaciones con otros elementos, tales como hierro, aluminio, vanadio, molibdeno y otros, para producir componentes muy resistentes que son utilizados por las industrias aeroespacial, aeronáutica, militar, petroquímica, agroindustrial, automovilística y médica.
Historia
El titanio (llamado así por los Titanes, hijos de Urano y Gea en la mitología griega) fue descubierto en Inglaterra por William Gregor, en 1791, cuando estudiaba un metal de color gris-plata que había encontrado. Poco después, en 1795, el químico alemán Martín Kalprotz, descubridor también del uranio, le dio el nombre de titanio. Este elemento es, en cuanto a su abundancia, el noveno de los que forman la corteza terrestre. Virtualmente, todas las [roca ígnea|rocas ígneas] y sus sedimentos, así como muchos minerales, principalmente los que contienen hierro y todos los organismos vegetales y animales, contienen titanio. El mineral más importante del que se extrae titanio es el rutilo (óxido de titanio), muy abundante en las arenas costeras. Por su parte, el titanio debe ser sometido previamente a un proceso metalúrgico de refinado, para prevenir su eventual reacción con sustancias gaseosas, tales como el nitrógeno, el oxígeno y el hidrógeno. Matthew A. Hunter preparó por primera vez titanio metálico puro (con una pureza del 99.9%) calentando tetracloruro de titanio (TiCl4) con sodio a 700-800 °C en un reactor de acero. El titanio como metal no se usó fuera del laboratorio hasta que en 1946 William Justin Kroll desarrolló un método para poder producirlo comercialmente, mediante la reducción del TiCl4 con magnesio y este método, llamado Método de Kroll, es el utilizado aún hoy en día (2008). En este proceso el metal se mantiene constantemente en una atmósfera de gas inerte, como argón o helio, que inhibe la reacción con cualquier otro elemento.[1] Durante los años 50 y 60 la Unión Soviética promovió el empleo de titanio en usos militares y submarinos (Clase Alfa y Clase Miguel) como parte de sus programas militares relacionados con la guerra fría. En los EE. UU., el Departamento de Defensa (DOD) comprendió la importancia estratégica del metal y apoyó los esfuerzos para su comercialización. A lo largo del período de la guerra fría, el gobierno estadounidense consideró al titanio como un material estratégico, y las reservas de esponja de titanio fueron mantenidas por el Centro de Reservas Nacional de Defensa, que desapareció en 2005. Hoy el mayor productor mundial es el consorcio ruso VSMPO-AVISMA, que representa aproximadamente el 29% de la cuota mundial de mercado. En 2006, la Agencia de Defensa estadounidense concedió 5,7 millones de dólares a un consorcio de dos empresas para desarrollar un nuevo proceso para fabricar polvo de metal de titanio. Bajo calor y presión, se puede usar el polvo para crear artículos fuertes, de peso ligero en las superficies de revestimiento de armaduras o componentes para el sector aeroespacial, el transporte e industrias de tratamiento químico.
Aplicaciones del titanio
Aplicaciones biomédicas
El titanio es un metal biocompatible, porque los tejidos del organismo toleran su presencia sin que se hayan observado reacciones alérgicas del sistema inmunitario. Esta propiedad de biocompatibilidad del titanio unido a sus cualidades mecánicas de dureza, ligereza y resistencia han hecho posible una gran cantidad de aplicaciones de gran utilidad para aplicaciones médicas, como prótesis de cadera y rodilla, tornillos óseos, placas antitrauma e implantes dentales, componentes para la fabricación de válvulas cardíacas y marcapasos, gafas, herramental quirúrgico tales como bisturís, tijeras, etc., y también la gran cantidad de piezas llamadas piercing.
-
La aleación de titanio más empleada en este campo contiene aluminio y vanadio según la composición: [[Ti6Al4V]]. El aluminio incrementa la temperatura de la transformación entre las fases alfa y beta. El vanadio disminuye esa temperatura. La aleación puede ser bien soldada. Tiene alta tenacidad. Las especificaciones de ASTM para el titanio quirúrgico son las siguientes:
-
ASTM B265: placa y lámina: ASTM F1108 Ti6Al4V: pieza moldeada para implantes quirúrgicos
-
ASTM B299: esponja: ASTM F1295 Ti6Al7: aleaciones de niobio para aplicaciones de implantes quirúrgicos
-
ASTM B861/B862: tubo: ASTM F1341: alambre de titanio sin aleaciones para aplicaciones de implante quirúrgico
-
ASTM B338: ASTM F136 Ti6Al4V: eli para aplicaciones de implante quirúrgico
-
ASTM B348: barra: ASTM F1472 Ti6Al4V: para aplicaciones de implante quirúrgico
-
ASTM B363: conexiones: ASTM F620 Ti6Al4V: eli forjados para implantes quirúrgicos
-
ASTM B367: piezas moldeadas: ASTM F67: titanio sin aleaciones para aplicaciones de implante quirúrgico
-
ASTM B381: forjado: varias especificaciones especiales AMS y MIL-T. Las razones para considerar el material ideal para implantes endoóseos son:
-
El titanio es inerte, la cubierta de óxido en contacto con los tejidos es insoluble, por lo cual no se liberan iones que pudieran reaccionar con las moléculas orgánicas.
-
El titanio en los tejidos vivos representa una superficie sobre la que el hueso crece y se adhiere al metal, formando un anclaje anquilótico, también llamado osteointegración. Esta reacción normalmente sólo se presenta en los materiales llamados bioactivos y es la mejor base para los implantes dentales funcionales.
-
Posee buenas propiedades mecánicas, su fuerza de tensión es muy semejante a la del acero inoxidable utilizado en las prótesis quirúrgicas que reciben carga. Es mucho más fuerte que la dentina o cualquier cortical ósea, permitiendo a los implantes soportar cargas pesadas. * Este metal es suave y maleable lo cual ayuda a absorber el choque de carga.